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Abstract

This paper presents the theoretical basis for both static and dynamic numerical approaches to the elastic stability of a

folding multi-layered truss. Both analyses are based on bifurcation theory and include geometrical nonlinearity. The

dynamic analysis includes an allowance for contact between nodes. Comparisons are made between published

experimental folding patterns and the patterns obtained from both numerical methods in which bifurcations are

demonstrated as elastic unstable snap-through behaviour. Several folding patterns are identified during the elastic

instability where the folding behaviour of the truss is shown to be a function of the initial geometry and velocity of the

dynamic loading. The authors suggest that the understanding of the behaviour will be very useful for the development of

light weight structures subject to dynamic loading based on the bifurcation static analysis and dynamic analysis (using both

the displacement control method and the load control method).

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There has been much work on the bifurcation analysis of structures using the general theory of elastic
stability [1] in areas such as atomic structures and micro-truss structures, using the potential function. Hunt
and Baker [2] invoke the Maxwell stability criterion based on global minima of energy in their examination of
localisation in the fracture of brittle structures and elastic and dissipative truss-like models with bilinear
constitutive characteristics. Ikeda et al. [3] show that an atomic matrix cellular model can suffer from an
explosion of unstable post-buckling states associated with an n-fold compound critical point. The atomic
models are analysed in a block diagonal context making use of the local and global symmetries of the
structures. The behaviour identified by Ikeda et al. [3] is for bifurcation of rigid bar models where nodes can
displace.

This paper presents a theoretical approach to examine the elastic stability of a folding multi-layered truss
model as shown in Fig. 1(a). The theoretical folding patterns obtained are compared to the actual patterns
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Multi-folding pantographic systems: (a) multi-layer model, (b) one half of multi-layer model, (c) basic three layer model.
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seen in the laboratory. The simplest truss has one layer and two elements and is better known as the
Von Mises truss. The (shallow) truss has zero stiffness on the point of snap-through behaviour or
unstable bifurcation phenomena allowing for geometrical nonlinearity [4–7]. Due to the complexity
of the governing equations researchers have employed the finite element method to compute numerical
solutions to model sequential snap-through behaviours in the folding and expanding truss with pantographic
cells.

The instabilities shown by multiple layer, cellular and long structural systems have been investigated by
other researchers. The review paper by Hunt et al. [8] investigates the cellular buckling that takes place in long
structures with finite waves of localised buckles in sequence. The conclusions suggest a new explanation of the
post-buckling behaviour of cellular structures with de-stiffening and re-stiffening characteristics. It is argued
that the Maxwell load is the limit of the minimum energy localised solutions as end-shortening tends to
infinity. If the structure were able to jump to the global minimum solution then the path for large displacement
will become approximately flat at the Maxwell load.

The nonlinear equilibrium behaviour for both the static and dynamic analysis with contact problem are
presented. The behaviour of the truss is different to that suggested by Hunt et al. [8]. Dynamic analysis with
nodal contact results in different localised bifurcation modes. The truss model in this paper does not
experience any horizontal motion of the nodes of the model. The layers are linked at nodes where there is load
transfer anddisplacement continuity.

This paper presents a description of the general equilibrium of sequential instabilities and restabilities as a
series of localised snap-throughs as an explanation for the experimental folding for a multi-layered
pantographic truss.

In the field of smart structural engineering, Holnicki-Szulc et al. [9,10] put forward the concept of multi-
folding micro-structures (MFM). In this work the problem of energy absorption under impact loading for
multi-layered micro-structures was considered. For energy absorbing systems there are typically three
requirements which are to: provide full dissipation of the kinetic energy; constrain excessive deformation; and
to minimise the level of acceleration. Holnicki-Szulc et al. [9,10] carried out experiments to demonstrate the
controlled folding of a three layered truss subject to impact loading and presented three different folding
patterns. In this engineering issue, we have to consider elastic (in-)stability with several snap-through
behaviours and a localised deformation, for example the number of snap-through behaviour in the system. In
a previous paper the authors presented a numerical simulation with the top members of a three layered truss
initiating the folding process [11], i.e. the members which were subject to the impact loading initiating the
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folding process. This paper builds upon that work by presenting a generalised analysis of the multiple folding
of a multiple layer truss and looking in detail at the folding behaviour of a three layer truss. I.e. folding
behaviour initiated by any members in the multiple layer truss. Hence we present in this paper, the folding
patterns for the system and derive a general formula for a truss with multiple layers shown in Fig. 1(a).
The folding patterns of the three layer truss initiated by the top members presented in the previous paper [11]
(see Figs. 6 and 7) are included. The multi-layered truss has right–left symmetry, hence in this paper the
theoretical bifurcation analysis is limited to considering symmetric fold patterns. As such, by allowing for
symmetric models only, we can therefore consider the half model shown in Fig. 1(b) for the theoretical
analysis.

The bifurcation paths from the multiple singular point are found using bifurcation analysis. In this paper we
establish multiple paths emanating from the initial compound bifurcation and limit point. In general, there is a
difference between experimental behaviour and behaviour computed using 0-eigenvalue analysis for the
singular stiffness matrix (e.g. see Ref. [12]). For static analysis it is shown that normal modes (approximate
eigenvectors) depend on the geometrical nodal condition without eigenvectors from the nonlinear stiffness
matrix.

The static and dynamic numerical simulations, of the basic truss shown in Fig. 1(c), each identify several
folding patterns and these show good agreement with the experimental multi-folding behaviour. The
numerical models allow for geometric nonlinearity and contact between nodes. To develop the numerical
model the authors estimated the energy that initiates the multi-folding of the structure under impact.
The experimental behaviour identified by Holnicki-Szulc et al. [9,10] was controlled by limiting the
stress in an individual member and hence active control of the folding characteristics of the truss was
achieved, resulting in the several different folding patterns in the experiment. For each of the different
folding patterns the folding is initiated by a vertical impact load at the top node (i.e. node 1 in Fig. 1(c)). The
model allows for symmetrical folding patterns only and therefore each node is restricted to have a vertical
degree of freedom. (The authors do briefly discuss asymmetric folding in the paper.) The folding patterns
of a multi-layered system are more complex and depend on the number of layers in the system. For the
multi-layered model there are multiple snap-throughs identified after the initial bifurcation point (BP). The
folding patterns can be controlled by introducing an imperfection to the position of the central
node that displaces in the local snap through. The results show that for the three layer truss there are three
different local folding patterns. The authors suggest that the understanding of the behaviour will be very
useful for the development of light weight structures subject to dynamic loading based on the bifurcation static
analysis and dynamic analysis (using both of the displacement controlling method and the load controlling
method).

In his paper [13] on the snap through and snap back response of concrete structures Crisfield states that
snap through involves a dynamic jump to a new displacement at a fixed load level. Snap back involves a
dynamic jump to a new load level at a fixed displacement. In this paper the authors commit the offence of
using the term snap through in both contexts.

2. Theory of elastic folding

In this section, we consider the folding mechanisms for the three layer truss structure subject to a vertical
impact load at the top node shown in Fig. 1(c). The system is a pin-jointed elastic truss and all nodes of the
system displace vertically only. No allowance is made for friction or gravity for this geometrically nonlinear
problem.

2.1. Theoretical approach for multi-folding truss

We assume a periodic height for each layer of hi ¼ giL where the width L of the truss is fixed. Therefore, an
initial length for each bar in the geometry of the figure is expressed as

‘i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ h2

i

q
¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2i

q
for i ¼ 1; . . . ; n. (1)
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The deformed length of each bar denoted as ‘̂i, is a function of the height and the nodal displacement variables

‘̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ fðnh� v1Þ � ððn� 1Þh� v2Þg

2

q
¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg1 � v̄1 þ v̄2Þ

2

q
, (2)

..

.

‘̂i ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgi � v̄i þ v̄iþ1Þ

2

q
, (3)

..

.

‘̂n ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgn � v̄nÞ

2

q
, (4)

where gi ¼ hi=L40; v̄i ¼ vi=L ði ¼ 1; . . . ; nÞ and v̄nþ1 ¼ 0 because the bottom node is translationally fixed.
Using Green’s expression for strain (see Appendix A for engineering strain formulation) we obtain the

elastic strain in each bar as

�i �
1

2

‘̂i

‘i

 !2

� 1

8<
:

9=
; for i ¼ 1; . . . ; n. (5)

Substituting Eqs. (1)–(4) into Eq. (5) we obtain

�i ¼
1

2

1þ ðgi � v̄i þ v̄iþ1Þ
2

1þ g2i
� 1

� �
for i ¼ 1; . . . ; n. (6)

The total potential energy, V, of the half model, subject to loading f =2 is then given by

V ¼
Xn

i¼1

EAi‘i

2
ð�iÞ

2
�

f

2
v̄1L (7)

¼
Xn

i¼1

EAiL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2i

p
2

1

4

1þ ðgi � v̄i þ v̄iþ1Þ
2

1þ g2i
� 1

� �2

�
f

2
v̄1L. (8)

For the case when gi ¼ g ði ¼ 1; . . . ; nÞ and EAi ¼ EA ði ¼ 1; . . . ; nÞ the total potential energy can be written
as

V ¼
bL

8

Xn

i¼1

ðv̄i � v̄iþ1Þ
2
ððv̄i � v̄iþ1Þ � 2gÞ2 �

f

2
v̄1L, (9)

where the stiffness parameter b ¼ EA=ð1þ g2Þ3=2 (i.e. b is a function of g). From Eq. (9), we can obtain the
equilibrium equations based on the principal of minimum energy [1] in the following way:

F ið. . . ; vi; . . .Þ �
@V

@vi

¼
@V

@v̄i

@v̄i

@vi

¼ 0 for i ¼ 1; . . . ; n. (10)

Hence, for the 1st, i-th and n-th equilibrium equations are

F1ðv̄1; v̄2Þ ¼
b
2
ðv̄1 � v̄2Þððv̄1 � v̄2Þ � gÞððv̄1 � v̄2Þ � 2gÞ �

f

2
¼ 0, (11)

Fiðv̄i�1; v̄i; v̄iþ1Þ ¼ ðv̄i�1 � v̄iÞððv̄i�1 � v̄iÞ � gÞððv̄i�1 � v̄iÞ � 2gÞ

� ðv̄i � v̄iþ1Þððv̄i � v̄iþ1Þ � gÞððv̄i � v̄iþ1Þ � 2gÞ ¼ 0, (12)

Fnðv̄n�1; v̄nÞ ¼ ðv̄n�1 � v̄nÞððv̄n�1 � v̄nÞ � gÞððv̄n�1 � v̄nÞ � 2gÞ � v̄nðv̄n � gÞðv̄n � 2gÞ ¼ 0. (13)

By using the implicit function theorem it is then possible to solve for all variables v̄i ði ¼ n; . . . ; 1Þ as follows:

Fnðv̄n�1; v̄nÞ ¼ 0! v̄n ¼Fnðv̄n�1Þ, (14)

Fiðv̄i�1; v̄i; v̄iþ1Þ ¼ Fiðv̄i�1; v̄i;Fiþ1ðv̄iÞÞ ¼ 0! v̄i ¼Fiðv̄i�1Þ, (15)
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F1ðv̄1; v̄2Þ ¼ F 1ðv̄1;F2ðv̄1ÞÞ ¼ 0, (16)

where Fð�Þ denotes a nonlinear function. Thus we obtain all the solutions for each nonlinear equilibrium path
by finding the normalised nodal displacements in turn.

The stability of the system is given by a nonzero value for the determinant of the tangent stiffness matrix,
the Jacobian for J 2 Rn�n. J is defined as follows:

J � ðJijÞ ¼
@2V

@vi@vj

� �
¼

@2V

@v̄i@v̄j

@v̄i @v̄j

@vi @vj

� �
¼

@Fi

@v̄j

@v̄j

@vj

� �
for i; j ¼ 1; . . . ; n (17)

and instability is defined as

det JðviÞ ¼ 0. (18)

It is then possible to determine the buckling load and the post-buckling mode shape of the truss at the singular
points from the nonlinear equations during instability.

2.2. Bifurcation analysis for three layers model (n ¼ 3)

We now determine the equilibrium paths for the basic model shown in Fig. 1(c). The height of each layer is
identical, i.e. hi ¼ h, hence gi ¼ g. In order to solve for the variable v̄i, we use the implicit function theorem and
substitute n ¼ 3 into Eqs. (13) and (14) which gives the solutions as follows:

v̄3 ¼F3ðv̄2Þ

¼ v̄2=2 for primary path;

¼ 1
2
ðv̄2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3v̄22 þ 12gv̄2 � 8g2

q
Þ for bif : paths;

8<
: (19)

v̄2 ¼F2ðv̄1Þ
¼ 2v̄1=3 for primary path;

¼ �gþ v̄1 �
ffiffi
3
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðv̄1 � gÞðv̄1 � 5gÞ

p
for bif : paths:

(
(20)

The use of the implicit function theorem (16) and/or (11) for v̄1 leads to the following equation:

F1ðv̄1;F2ðv̄1ÞÞ ¼ f � bF1ðv̄1Þ ¼ 0 (21)

hence it is seen that the relationship between the load parameter and the displacement v̄1 is nonlinear

f ¼ bF1ðv̄1Þ. (22)

Using v̄2 ¼F2ðv̄1Þ and v̄3 ¼F3ðv̄2Þ we can then express the equilibrium equations for the primary and
bifurcation paths in terms of variable v̄1 as follows:

f pri: ¼ b
v̄1

3

v̄1

3
� g

� �
v̄1

3
� 2g

� �
for primary path, (23)

f bif : ¼ �
b

3
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðv̄1 � gÞðv̄1 � 5gÞ

p
� ðv̄1 � 2gÞðv̄1 � 4gÞ for bif : paths. (24)

The theoretical primary equilibrium and bifurcation paths are shown in Fig. 2(a) (see also Appendix B). We
obtain the critical positions for the truss using the condition df =dv̄1 ¼ 0 for maximum and minimum values.
For the equilibrium paths under consideration we obtain above the following result:

v̄BP1 ¼
3�

ffiffiffi
3
p

3
ð3gÞ ¼ ð3�

ffiffiffi
3
p
Þg ¼

1:268g

4:732g

(
for n ¼ 3.

Finally, the maximum load is given by

f max ¼ f ðv̄BP1 Þ ¼ �
2g3

3
ffiffiffi
3
p b.
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2.3. Numerical considerations for static analysis

The solutions to the static equilibrium equations (23) and (24) were found using the arc-length method
[14–18]. These solutions identify the paths followed for each of the three folding patterns for the three layer
truss and are shown in Fig. 2(a). Fig. 2(b) shows the corresponding numerical solutions. The different paths
followed for the folding patterns of the truss start from the initial point of instability. This point indicated by
BP in Fig. 2(a) and (b) is called the multiple BP and the maximum (or minimum) limit point. The eigenvalue at
this singular point is zero. The results of the numerical analysis, i.e. the static equilibrium primary and
bifurcation paths identified are shown in Fig. 2(b). The numerical results correspond approximately to the
theoretical solutions shown in Fig. 2(a) (see also Fig. 15). The line of least stiffness after BP is that of the two
bifurcation paths which means local snap-through (member folding) behaviour has occurred.

2.4. Folding modes

Ikeda et al. [3] show that an atomic matrix cellular model can suffer from an explosion of unstable post-
buckling states associated with an n-fold compound critical point. The atomic models are analysed in a block
diagonal context making use of the local and global symmetries of the structures and various kinds of
localisation are identified for both unlinked and weakly linked models. The deformation modes of a single cell
are examined in the paper and it is concluded, due to energy considerations, that for the unlinked model the
most likely failure state is one of thorough localisation.

Two modes are identified for the single cell, namely mode A and mode B in Fig. 8 of that paper [3]. Group
theory is used in the analysis for the description of the symmetries. Mode A and mode B are bifurcations
which follow paths that deviate from the primary path. Mode A is an asymmetric mode and mode B is
symmetric about a horizontal axis collinear with the loading.

The asymmetric deformation of the local folding of mode A is a symmetry breaking path that deviates from
the primary path. For mode B occurring at the critical point B there are two paths separating: one is global
folding D2 and the other one is local symmetric folding D1 mode.
There is similarity with the mode B of Ikeda et al. [3] where we have the right–left symmetry about a

vertical axis which is collinear with the loading direction as D1 in comparison with the up–down symmetry
for the mode B. The number of different paths after the critical point B again should depend on the
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number of cell (elements) or model layers. The physical significance of this being that there is one path
for the different folding patterns based on the geometrical symmetry of a structure containing homogenous
cells.

For the static problem the folding patterns can be found by considering the eigenproblem of the Jacobian.
For the folding patterns that are identified no contact between nodes is assumed. Hence for the localised
folding as shown below although the gap between nodes does reduce to zero no contact occurs.

For all singular paths at the BP the Jacobian equates to zero, i.e. when the increasing deformation v̄1 reaches
a critical value det J ¼ 0. For the particular case when det Jðv̄BP1 Þ ¼ 0 of Eq. (18) three eigenvectors are
obtained gi and shown in Fig. 3.

The different collapse modes or folding patterns corresponding to these eigenvectors are shown in
Fig. 3(a)–(c) as follows: (a) Eigenvector g1 shows localised folding of the top member. (b) Eigenvector g2
shows localised folding of the middle member. (c) Eigenvector g3 shows localised folding of the bottom
member. These folding patterns are those identified by the bifurcation paths.

The vertical gap between nodes prior to loading is 2h. During the folding process when nodes come into
contact the vertical gap reduces to zero. In the following four subsections each of the eigenvectors shown in
Fig. 3(a)–(c) are discussed. Because of symmetry of the folding pattern the discussion is limited to the left-hand
half of the truss only. The static behaviour compares with the dynamic behaviour described below and
behaviour observed in experiments as seen in Figs. 6, 8,12.
2.4.1. Proportional deformation: global folding (primary path)

The mode shape for this eigenvector shows proportional folding of all the members and corres-
ponds to the primary unstable equilibrium path shown in Fig. 2(a). When the top node (node 1) has
displaced by a vertical distance 3h then, due to proportional displacement of all nodes, all the members are
horizontal. This corresponds to the point in Fig. 2(b) when the primary path graph crosses the horizontal axis
at 3h.
2.4.2. Folding mode g3: localised folding initiated by bottom member (bifurcation path)

The mode shape for this eigenvector corresponds to the bottom member folding shown in Fig. 3(c). When
this members folds the gap between nodes 2 and 4 reduces to zero. For this fold pattern the members joining
nodes 2 to 3 and 4 to node 3 will be collinear and adjacent.
2.4.3. Folding mode g2: localised folding initiated by middle member (bifurcation path)

The mode shape for this eigenvector corresponds to the middle member folding shown in Fig. 3(b). When
this member folds the gaps between nodes 1 and 3 and nodes 2 and 4 reduces to zero. Hence for this
fold pattern the members joining nodes 1 to 2, nodes 3 to 2 and nodes 3 and 4 will be collinear and adjacent
(Table 1).
Fig. 3. Nodal displacement initiating fold mode: (a) the top members folding mode as g1, (b) the middle members folding mode as g2, (c)

the bottom members folding mode as g3.
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Table 1

Nodal initial position with perfect model.

Node X (m) Y (m)

1 0.240 0.489

2 0.000 0.326

3 0.240 0.163

4 0.000 0.000

5 0.480 0.000

6 0.480 0.326

Table 2

The coordinates of nodal points.

Node X (m) Y (m)

1 0.240 0.489

2 0.000 0.327

3 0.240 0.163

4 0.000 0.000

5 0.480 0.000

6 0.480 0.326

I. Ario, A. Watson / Journal of Sound and Vibration 324 (2009) 263–282270
2.4.4. Folding mode g1: localised folding—top member (bifurcation path)

The mode shapes for these eigenvectors show similar behaviour and correspond to the top member folding
shown in Fig. 3(a). When the top member folds the gap between nodes 1 and 3 reduces to zero. For these fold
patterns the members joining nodes 1 to 2 and 3 to node 2 will be collinear and adjacent.

3. Dynamic analysis for folding truss allowing for contact

The dynamic analysis equation for the folding truss combines mass, damping and nonlinear stiffness FðvÞ in
the following equation:

M €̄vðtÞ þ C _̄vðtÞ þ Fðv̄ðtÞÞ ¼ 0, (25)

where M 2 RN�N is the mass matrix; C 2 RN�N is the damping matrix; Fð�Þ is the nonlinear stiffness vector;
f €̄viðtÞg

T

¼ €̄vðtÞ 2 RN is normalised acceleration; f _̄viðtÞg
T ¼ _̄vðtÞ 2 RN is the velocity; fv̄iðtÞg

T ¼ v̄ðtÞ 2 RN is the
normalised displacement and N is the total number of degrees of freedom in the system. If the mass and
damping in this system are given as independent uniform variables mi ¼ m; ci ¼ c ði ¼ 1; . . . ; nÞ, then we
obtain the equation from Eq. (16) for the nodal variables €̄v1ðtÞ; _̄v1ðtÞ; v̄1ðtÞ and this results in the following
equation:

m €̄v1ðtÞ þ c _̄v1ðtÞ þ F1 v̄1ðtÞ;F2ðv̄1ðtÞÞð Þ ¼ 0. (26)

We solve this equation using the dynamic numerical method [5,6] with both incremental load and incremental
displacement.

3.1. Numerical and contact conditions of the model

The nodes for the FEM model are shown in Fig. 1(c) and Table 2. The extensional stiffness of all
members in the model have a normalised value of EA ¼ 1. The value for geometric stiffness parameter b is
given as

b ¼
EA

ð1þ g2Þ3=2
¼

1

ð1þ 0:6792Þ3=2
¼ 0:566,
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where g ¼ h1=L ¼ 0:163
0:240 ¼ 0:679. For the contact problem we introduce an additional virtual element between

nodes 1 and 3; nodes 2 and 4 (and nodes 6 and 5). We assume a constant level of damping, c, and mass, m, for
all elements. We assume frictionless pins and zero gravity.

Using Eqs. (21) and (26) we obtain the dynamic equation for the displacement v̄1ðtÞ for node 1 as follows:

m €̄v1ðtÞ þ c _̄v1ðtÞ þ ðbF1ðv̄1Þ � f Þ ¼ 0, (27)

dividing each term by m, we obtain the following equation:

€̄v1ðtÞ þ c0 _̄v1ðtÞ þ b0F1ðv̄1Þ ¼ f 0, (28)

where c0 ¼ c=m, b0 ¼ b=m and f 0 ¼ f =m (and includes both the primary path and the bifurcation loads).
Therefore, this Eq. (28) includes explicit form of the functionF1ð�Þ. If the value of the damping parameter c0 is
small, the system response appears as vibration motion analogous to a molecular model.

3.2. Criteria for contact condition during dynamic analysis

The analysis includes the virtual elements which allows for modelling the contact problem. The stiffness of
the virtual members is nonzero when the length of the virtual member is zero (i.e. nodes are in contact).
However, if the member length is greater than zero (i.e. no nodal contact) the virtual member contributes zero
stiffness to the system stiffness. The length of the virtual member (termed dummy member hence) and
associated axial stiffness is defined in the following equation:

‘̂dummy

40; EAdummy ¼ 0 without contact;

¼ 0; EAdummy ¼ 1000 with contact:

(
(29)

During the folding process prior to any contact between nodes all dummy elements have zero stiffness since
the lengths of these dummy elements are nonzero. At contact there is an increase in stiffness of the system. The
individual stiffness of each (real) member is unchanged; however, due to an increase in system stiffness, caused
by contacting nodes, a value of EA ¼ 1000 for the dummy elements was found to give good results for the
folding pattern behaviour of the pantographic truss.

The analysis allows for separation of nodes during the dynamic behaviour. As such the length of the dummy
element, ‘̂dummy, can increase from zero. As soon as there is a gap between nodes the stiffness of the dummy
element becomes zero again. Hence there is no ‘extra stiffness’ during any noncontact behaviour occurring
after any contact behaviour. If local snap-through behaviour occurs there will be contact for the restabilised
state.

For each of the folding processes shown in Fig. 3(a)–(c) contact occurs between nodes. When local
folding is initiated by the top member this initially leads to contact between nodes 1 and 3. Further
loading will eventually result in the bottom member folding and contact between nodes 2 and 4. When local
folding is initiated by the bottom member there is contact between nodes 2 and 4. Further loading will
eventually result in the top member folding and contact between nodes 1 and 3. For middle member
initiated folding results in contact between nodes 1 and 3 plus nodes 2 and 4. For the primary path folding no
contact occurs.

3.3. Folding processes by experiment and numerical simulation

We have developed a path following technique for the dynamic folding of a system under impact loads that
allows for both load control and displacement control. The results of the numerical simulations are compared
with the laboratory experiment carried out by Holnicki-Szulc et al. [10]. For each of the folding patterns
initiated by local folding in the dynamic analysis the experimental and numerical results are described and
compared. Six photographs of the experimental folding process are shown (A–F) where Picture (A) for each
folding process is the initial location of the structural system prior to impact. In the experimental tests
displacement at the joints is possible in the vertical direction only and the top joint is the point of application
of the impact load. Each of the six members have identical properties of absolvers (stiffness). For the
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numerical solutions an imperfection was added to the input data for each folding process to initiate the desired
folding process by displacing the position of the node that initiates the folding process, by 1 cm (i.e. either
node 1 (top member) or node 3 (for bottom or middle member)).
3.4. Local folding initiated by bottom members for ðg3Þ

The experimental behaviour showing the bottom members initiating the folding process is shown in Fig. 4.
The numerical solutions and folding processes are shown in Fig. 5. The experimental behaviour is described as
follows: Picture (A) in Fig. 4 shows the initial position of the system; Picture (B) shows the bottom members in
the process of the first snap through and in an approximately horizontal state; Picture (C) shows the post-snap
through of the bottom members; Picture (D) shows the top members during the second snap-through process
and in an approximately horizontal state; Picture (E) shows the post-snap through of the top members. Picture
(F) is the all contact state for all members. For the displacement control simulation the folding process is
shown as (a)–(f) in Fig. 5(b). For the load control simulation the folding process is shown as (a), (d) and (f0) (at
higher load). Hence there are two snap-throughs: first in the bottom members and then later in the top
members for either approach.

For the displacement control simulation Fig. 5(a) shows at (a) (i.e. BP at the onset of instability) there is a
sudden loss of stiffness and the path followed is shown as the black solid dots. After snap through of the
bottom members there is local restabilisation and a positive stiffness. The line keeps climbing until (d) is
reached which marks the onset of the second snap-through instability and the top members snap through.
When restabilisation occurs no further snap through is possible and the system stiffness (measured as the
gradient of the load displacement curve) keeps increasing to a new maximum value. When compared to the
static paths the process after (b)–(d) are very similar. At (f) all the members are in contact. However after (f)
the system stiffness is higher than the system stiffness on the static path (where there is no contact) and these
paths separate. Hence the stiffness modulus has increased significantly contact takes place. For the load
control simulation Fig. 5 shows the dynamic path followed as the row of horizontal gray dots. Hence the path
followed is from (a) for the first snap through and (d)–(f0) as the second snap through. When restabilisation
occurs no further snap through is possible and the system stiffness keeps increasing. The magnitude of the load
f BP for this pattern almost equals f d and f f 0 .
Fig. 4. Experimental behaviour showing bottom members initiating folding process from (A) to (F) (observed by J. Holnicki-Szulc and P.

Paw"owski).
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Fig. 5. Numerical solutions for bottom members initiating folding pattern: (a) dynamic and static equilibrium paths compared, (b) folding
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Fig. 6. Experimental behaviour showing top members initiating folding process from (A) to (F) (also shown in Ref. [11]).
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3.5. Local folding initiated by top members for ðg1Þ

The behaviour shown by the truss for the top members folding is similar to the behaviour seen when the
bottom members initiate the folding.

The experimental behaviour showing the top members initiating the folding process is shown in Fig. 6.
The numerical solutions and folding processes using the displacement control method are shown in Fig. 7.
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The experimental behaviour is described as follows: Picture (A) in Fig. 6 shows the initial position; Picture (B)
shows the top members during the first snap-through process and just prior to achieving a horizontal state;
Picture (C) shows post-snap through of the top members just past horizontal; Picture (D) shows the
restabilised state after the top members have undergone the snap-through process; Picture (E) shows the
bottom members just about to snap through; Picture (F) shows the post-snap-through stabilised state.

For the displacement control simulation Fig. 7(a) shows at BP (i.e. the onset of instability) there is a sudden
loss of stiffness and the path followed is shown as a negative load value with the blue solid line. Hence the path
followed is (a)–BP–(b)–(c)–CP–(e)–(f)–(f0)–(g)–(h). After the first snap through of the top members there is
local restabilisation and a positive stiffness. The line keeps climbing through (c)–(d) (or CP) until (e) is reached
which marks the onset of the second instability and the bottom members snap through. The line followed here
is (e)–(f)–(f0). When restabilisation occurs no further snap through is possible and the system stiffness keeps
increasing starting at (f0)–(g)–(h). When compared to the static paths the dynamic processes after (d) and (g)
show higher system stiffnesses. These increases occur when nodes come into contact and members are collinear
and adjacent. It is observed that the path of (d)–(e)–(f) corresponds to the local equilibrium curve of a Von
Mises truss model. For the load control simulation Fig. 7(a) shows the path followed as the row of horizontal
gray dots. Hence the path followed is shown with two snap-throughs as BP to (e) and (e) to (h). As can be seen
in the figure, point (h) corresponds to the final point after all members are in contact. When restabilisation
occurs no further snap through is possible and the system stiffness keeps increasing. For the displacement
control simulation the folding process is shown as (a)–(g) in Fig. 7(b). For the load control simulation the
folding process is shown as BP, (e) and (h). Hence there are two snap-throughs: first in the top members and
then later in the bottom members for either approach.

3.6. Local folding initiated by middle members for ðg2Þ

The experimental folding behaviour showing the middle members initiating the folding process is shown in
Fig. 8. The numerical solutions and folding processes are shown in Fig. 9. The experimental behaviour is
described as follows: Picture (A) in Fig. 8 shows the initial position; Picture (B) shows the middle members
during the first snap-through process and just prior to achieving a horizontal state; Picture (C) shows post-
snap through of the middle members just past horizontal; Picture (D) shows the restabilised state with all
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Fig. 8. Experimental behaviour showing mid members initiating folding process from (A) to (F).
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members collinear; Picture (E) shows all the members just about to snap through; Picture (F) shows the post-
snap-through stabilised state.

For the displacement control simulation Fig. 9(a) shows at BP (i.e. the onset of instability) there is a sudden
loss of stiffness and the path followed is shown as the black colour solid dots. After snap through of the middle
members there is local restabilisation and a positive stiffness. The line keeps climbing through (c) until (d) is
reached. The maximum load parameter for this folding pattern is larger than two previous foldings. The
maximum load value is approximately three times the load parameter at BP. This is caused by a substantial
increase in stiffness and a large load is required for the second snap through because three layers of the truss
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need to snap through. (d) marks the onset of the second instability and all the members snap through. The line
followed here is (d)–(e)–(f)–(f0). When restabilisation occurs no further snap through is possible and the system
stiffness keeps increasing. When compared to the static paths the dynamic processes after (c) shows higher
system stiffnesses. These increases occur when nodes come into contact and members are collinear and
adjacent. For the load control simulation Fig. 9(a) shows the dynamic path followed as the row of horizontal
yellow dots. Hence the path followed is shown with two snap-throughs which occur at two different levels of
load parameter, i.e. as BP to (c0) and (d) to (f0). The load f d for this pattern is almost three times the load at
f BP. Hence there are two snap-throughs first in the middle members and then later in all the members
simultaneously for both approaches. Each point (a)–(f) on the equilibrium path in Fig. 9(a) corresponds to the
folding process (a)–(f) in Fig. 9(b) for the displacement control simulation.

3.7. Comparison of the folding patterns

We have successfully obtained the numerical simulation for the folding of a multi-layered truss for both
static and dynamic considerations and have numerically demonstrated the characteristics for each of the
folding patterns. For the dynamic case three patterns are identified and shown in Fig. 10(a). The two dynamic
paths for folding patterns 1 and 3, shown as green and orange lines, referring to top and bottom member
initiated folding, are similar. The dynamic paths for the folding pattern 2 (middle member initiated folding) is
noticeably different and has a substantially larger load parameter requirement for snap the second snap
through. The figure also shows the static paths shown grey. The sections of the dynamic paths which follow
the same paths as the static solution occurs only where there is no contact. After contact between nodes (in the
dynamic problem) there is an increase in the system stiffness and the dynamic path diverges from the static
paths.

Fig. 10(b) shows kinetic energy for the dynamic load control. Kinematic energy for top and bottom member
initiated folding patterns are similar. It is seen that kinematic energy for folding pattern 2 is much larger due to
the large increase in stiffness and hence a larger load requirement to precipitate the second snap through. The
second snap through requires snap through of all members and may be considered as a global snap through
(Fig. 10(b)).
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4. Asymmetric folding uncertainty and its effects on folding symmetry

The three local folding patterns that have been observed in the laboratory have been discussed above. There
are other modes that are possible but which are difficult to observe. It has been experimentally demonstrated
that it is possible for nonsymmetric modes to occur as shown in Fig. 11.

The truss system will have asymmetry if individual elements have variation in their parameters. If there is
sufficient variation then it maybe possible to obtain a substantially different folding pattern such as the
unsymmetrical pattern observed in Fig. 12. Here, the geometry of the system has symmetry, but there are
different prestresses in the members. Although this folding pattern is mentioned—its exact causes are beyond
the scope of this paper and is just to alert the reader to other possible patterns that can occur in the physical
world.
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Fig. 12. The process of symmetry-breaking folding pattern.
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5. Conclusion

In this paper, the nonlinear path folding behaviour of a folding truss has been analysed from a theoretical
basis and by computing numerical simulations. The numerical solutions are compared to published
experimental work carried out by Holnicki-Szulc et al. [9,10] in the Polish Academy of Sciences. The
theoretical and numerical analyses have shown that the behaviour of the folding truss is dependent on
both the velocity of a dynamic loading and the initial geometry of a structure. It has been demonstrated
that there are several BP and equilibrium paths for the model which has a singular problem at the maximum

limit point and the multiple BP. It has further been shown that the number and complexity of the
folding patterns are a function of the number of layers in the system. Hence when there are more layers
in the truss there is an increase in the folding patterns due to this larger number of degree of freedom
of a model. The analyses have shown that in solving the nonlinear governing equations there are
implicit and complex bifurcation paths along the unstable primary path during the folding mechanism
for both the static and dynamic problems (i.e. without and with contact respectively). When allowance
was made for contact between nodes and elements it was found that, for the middle folding truss, the
piling bar elements substantially increase the stiffness of the truss. If changeable nonlinear stiffness
(e.g. imperfection control) is applied to a deployable structure it will then be possible to control the
folding pattern. For the multi-layered truss, there have been several folding mechanisms and sequential
snap-through behaviours identified, both global and local foldings. The local behaviour of the truss is
analogous to the micro-structure behaviour of a honeycomb material and the global behaviour of the truss is
similar to the natural failure for this type of material. In summary this research has investigated the basic
mechanism of the dynamic folding of a pantographic system with symmetry, based on bifurcation analysis.
For other systems, such as those typified by light weight structures or cellular structure, then they may also
exhibit the folding behaviour shown herein.
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Appendix A. Strain definition

Strain can be defined as normal strain (general engineering strain) or as Green’s strain. Numerical results for
the equilibrium curves have been calculated by using both definitions. In the body of the paper the authors
have used Green’s formulation for strain defined in Eq. (5).

Normal strain for an element i is defined in the following equation:

��i ¼
‘̂i

‘i

� 1 for i ¼ 1; . . . ;m. (30)

Total strain energy for both strain approaches are defined as

U ¼
Xm

i¼1

EA‘i

2
ð�iÞ

2
ðGreen’ s strainÞ, (31)

U� ¼
Xm

i¼1

EA‘i

2
ð��i Þ

2
ðNormal strainÞ. (32)
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A ratio a is now introduced where a is defined as a load ratio and is equated as a ¼ f �=f , where f and f � are
the load parameters for each strain approach (where ‘�’ denotes normal strain).

a ¼
f �

f
¼
@U�=@v1

@U=@v1
¼

U�

U
¼

P
ð��i Þ

2P
ð�iÞ

2

	
ð��1Þ

2

ð�1Þ
2
¼ 4 �

‘̂1
‘1
� 1

 !2

‘̂1
‘1

 !2

� 1

8<
:

9=
;

2
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� v̄1 þ v̄2Þ

2
þ 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p � 1

0
@

1
A

2

ðg� v̄1 þ v̄2Þ
2
þ 1

g2 þ 1
� 1

� �2

¼
4ðg2 þ 1Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� v̄1 þ v̄2Þ

2
þ 1

q
Þ
2

ðv̄1 � v̄2Þ
2
ð2g� v̄1 þ v̄2Þ

2
. (33)

The above equation shows the comparison between the partial strain energies (ð�1Þ
2 and ð��1Þ

2), and it is seen
in Fig. 13 that the normal strain energy formulation is higher than for Green’s strain formulation. (For this
calculation the following parameters are used: v̄2 ¼ 2v̄1=3; h ¼ 0:163; L ¼ 0:24; EA ¼ 1.)
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If the snap-through behaviour for one layer is considered then v̄2 ¼ 0 and v̄1 ¼ g; the critical value for a is
then given as

a 	
f �

f
¼

4ð1þ g2Þð2þ g2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
Þ

g4
. (34)

This ratio of the load parameters is a function of the aspect ratio g only. The relationship between a and g is
shown in Fig. 14(a). When g is 0:679 (i.e. 0:163m=0:24m), the ratio a ¼ 1:198.

For the multiple lay truss, using the same numerical conditions (v2 ¼ 2v1=3; h ¼ 0:163; L ¼ 0:24; EA ¼ 1),
the numerical results for the primary equilibrium path are shown in Fig. 14(b).

Finally, it is shown in Fig. 15, the static paths and the primary path for both strain approaches. The grey
line shows the numerical result based on the definition of normal strain; the blue and green lines show the
Green strain formulation results. The bifurcation path of grey line (normal strain) has skewed a small amount.
The green line has symmetry about the horizontal axis.

Appendix B. Equilibrium formulation of three layers truss

The equilibrium equations for the 3 bar truss have been obtained from Eqs. (11)–(13) as follows:

F1 ¼
b
2
ðv̄1 � v̄2Þfðv̄1 � v̄2Þ � ggfðv̄1 � v̄2Þ � 2gg �

f

2
¼ 0, (35)

F2 ¼ � ðv̄1 � v̄2Þfðv̄1 � v̄2Þ � ggfðv̄1 � v̄2Þ � 2gg

þ ðv̄2 � v̄3Þfðv̄2 � v̄3Þ � ggfðv̄2 � v̄3Þ � 2gg ¼ 0, (36)

F3 ¼ �ðv̄2 � v̄3Þfðv̄2 � v̄3Þ � ggfðv̄2 � v̄3Þ � 2gg þ v̄3ðv̄3 � gÞðv̄3 � 2gÞ ¼ 0. (37)

Rearrangement of Eq. (37) gives

ð2v̄3 � v̄2Þðv̄
2
3 � v̄2v̄3 þ v̄22 � 3gv̄2 þ 2g2Þ ¼ 0.

Then, the relationship between v̄3 and v̄2 is obtained as

v̄3

¼ v̄2=2;

¼ 1
2
ðv̄2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3v̄22 þ 12gv̄2 � 8g2

q
Þ:

8<
: (38)
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If we adopt the first equality of Eq. (38) i.e. ðv̄2 � v̄3Þ ¼ v̄2=2 and substitute it into Eq. (36), we obtain the
relation between v̄2 and v̄1 as

�ðv̄1 � v̄2Þfðv̄1 � v̄2Þ � ggfðv̄1 � v̄2Þ � 2gg þ
v̄2

2

v̄2

2
� g

� �
v̄2

2
� 2g

� �
¼ 0,

3

2
v̄2 � v̄1

� �
3

4
v̄22 �

3

2
v̄1v̄2 þ v̄21 � 3g v̄1 �

v̄2

2

� �
þ 2g2

� �
¼ 0, (39)

v̄2

¼ 2
3

v̄1;

¼ ð�gþ v̄1Þ �
ffiffi
3
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðv̄1 � gÞðv̄1 � 5gÞ

p
:

8<
: (40)

Moreover, in order to obtain the relationship between the load f and v̄1, we substitute Eq. (40) into Eq. (35).
Adopting the relationship v̄2 ¼ 2v̄1=3, i.e. ðv̄1 � v̄2Þ ¼ v̄1=3 results in the following:

f pri: ¼ b
v̄1

3

v̄1

3
� g

� �
v̄1

3
� 2g

� �
. (41)

This equation is for the primary path (i.e. proportional displacement hence ðv̄1 � v̄2Þ ¼ ðv̄2 � v̄3Þ ¼ v̄1=3).
Adopting Eq. (40), i.e. ðv̄1 � v̄2Þ ¼ g�Q; where Q ¼

ffiffi
3
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðv̄1 � gÞðv̄1 � 5gÞ

p
results in the following

equation:

f bif : ¼ bðg�QÞð�QÞð�g�QÞ,

therefore

f bif : ¼ �
b

3
ffiffiffi
3
p ðv̄1 � 2gÞðv̄1 � 4gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðv̄1 � gÞðv̄1 � 5gÞ

p
. (42)

Therefore, Eqs. (41) and (42) correspond to Eqs. (23) and (24), respectively.
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